Optimization of catholyte for halide-based all-solid-state batteries

Publication Type

Journal Article

Date Published

06/2025

Authors

DOI

Abstract

Halide solid electrolytes gain significant attention due to their high ionic conductivity, low processing temperature, dry air compatibility, and high-voltage stability. However, low cathode active material (CAM) loading in the composite cathode constrains the realization of high energy density for halide-based all-solid-state batteries. In this study, three halide materials, raw Li3YBrCl5 (LYBC-R, <30 μm), milled LYBC (LYBC-M, <5 μm) and freeze-dried Li3InCl6 (LIC, <500 nm), were used as catholytes, combined with LYBC-M as the electrolyte and LiIn alloy as the anode. The CAM:catholyte ratio was investigated as well as stack pressure and operating temperature. Our study demonstrates that particle size of the catholyte plays an important role only for high CAM loading or high C-rate cycling. At moderate CAM loading (65 and 70 wt% LiNi0.83Mn0.06Co0.11O2) and 0.1 C-rate, all the three catholytes perform well, providing initial discharge capacities >177 mAh/g. At high CAM loading (85 wt%) and 0.1 C-rate, a cathode with the nano-scale LIC catholyte provides discharge capacity of 175 mAh/g, while the larger particle size catholytes suffer significantly reduced capacity. Both LYBC and LIC catholytes provided capacity retention >80 % after 200 cycles at 0.5C. These results imply that cathode particle size is critically important for performance at high CAM loading. Furthermore, both electrolyte and cathode were tape cast to scale up size and prepare realistic layer thicknesses. A small amount of binder was used in both layers, to balance the electrochemical performance and mechanical properties. The discharge capacity of a tape cell was 152 mA h/g at 0.1C with a capacity retention of 81.8 % after 20 cycles at 0.5C. The results demonstrate the excellent performance of LYBC as an electrolyte, and provide guidance for halide-based cathode design.

Journal

Journal of Power Sources

Volume

640

Year of Publication

2025

URL

ISSN

0378-7753

Organization

Related Files