Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3-δ/sub> electrolyte

Publication Type

Journal Article

Date Published

05/2019

Authors

DOI

Abstract

Proton conducting oxide electrolyte materials could potentially lower the operating temperature of metal-supported solid oxide cells (MS-SOCs) to the intermediate range 400 to 600 °C. The porous metal substrate provides the advantages of MS-SOCs such as high thermal and redox cycling tolerance, low-cost of structural materials, and mechanical ruggedness. In this work, the viability of co-sintering fabrication of metal-supported proton conducting solid oxide cells using BaZr1-x-yCexYyO3-δ (BZCY) is investigated. BZCY ceramics are sintered at 1450 °C in reducing environment alone and supported on FeCr alloy metal support, and key characteristics such as Ba loss, sintering behavior, and chemical compatibility with metal support are determined. Critical challenges are identified for this fabrication approach, including: Contamination of the electrolyte with Si and Cr from the metal support, incomplete electrolyte sintering, and evaporation of electrolyte constituents. Various approaches to overcome these limitations are proposed, and preliminary assessment indicates that the use of barrier layers, low-Si-content stainless steel, and sintering aids warrant further development.

Journal

International Journal of Hydrogen Energy

Volume

44

Year of Publication

2019

Issue

26

ISSN

03603199

Organization

Research Areas